Semantic Similarity Measures Applied to an Ontology for Human-Like Interaction
نویسندگان
چکیده
The focus of this paper is the calculation of similarity between two concepts from an ontology for a Human-Like Interaction system. In order to facilitate this calculation, a similarity function is proposed based on five dimensions (sort, compositional, essential, restrictive and descriptive) constituting the structure of ontological knowledge. The paper includes a proposal for computing a similarity function for each dimension of knowledge. Later on, the similarity values obtained are weighted and aggregated to obtain a global similarity measure. In order to calculate those weights associated to each dimension, four training methods have been proposed. The training methods differ in the element to fit: the user, concepts or pairs of concepts, and a hybrid approach. For evaluating the proposal, the knowledge base was fed from WordNet and extended by using a knowledge editing toolkit (Cognos). The evaluation of the proposal is carried out through the comparison of system responses with those given by human test subjects, both providing a measure of the soundness of the procedure and revealing ways in which the proposal may be improved.
منابع مشابه
An information theoretic approach to improve semantic similarity assessments across multiple ontologies
Semantic similarity has become, in recent years, the backbone of numerous knowledge-based applications dealing with textual data. From the different methods and paradigms proposed to assess semantic similarity, ontology-based measures and, more specifically, those based on quantifying the Information Content (IC) of concepts are the most widespread solutions due to their high accuracy. However,...
متن کاملGeneric Semantic Relatedness Measure for Biomedical Ontologies
This paper presents a new method to measure semantic relatedness between concepts of an ontology with a rich set of relationship types, and preforms a preliminary assessment of its validity. The measure was designed to be applicable to all biomedical ontologies, and to be flexible enough as to allow for different applications to address their own requirements by tuning, for example, the weight ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملFunSimMat: a comprehensive functional similarity database
Functional similarity based on Gene Ontology (GO) annotation is used in diverse applications like gene clustering, gene expression data analysis, protein interaction prediction and evaluation. However, there exists no comprehensive resource of functional similarity values although such a database would facilitate the use of functional similarity measures in different applications. Here, we desc...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Artif. Intell. Res.
دوره 44 شماره
صفحات -
تاریخ انتشار 2012